SciELO - Scientific Electronic Library Online

 
vol.38 número2Control de trayectoria en el espacio cartesiano de robot paralelo de 2GDL usando modelo cinemático vectorialCaracterización del canal óptico para la planificación de redes Li-Fi en entornos virtuales enriquecidos índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Artigo

Indicadores

  • Não possue artigos citadosCitado por SciELO

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Ingeniería Electrónica, Automática y Comunicaciones

versão On-line ISSN 1815-5928

Resumo

CASTANO, Luis  e  OSORIO, Gustavo. An approach to the numerical solution of one-dimensional heat equation on SoC FPGA. EAC [online]. 2017, vol.38, n.2, pp. 83-93. ISSN 1815-5928.

A common kernel used in scientific computing is the stencil computation. FPGA based heterogeneous systems has been used to overcome stencil algorithm performance limitations due to the memory bandwidth on CPU and GPU based systems. Performance improvement is achieved through the combination of several data flow optimization techniques, taking advantage of the FPGA inherent parallelism. However, array architectures used for some two-dimensional problems involves the need of considerable number of FPGAs, for mesh sizes that can be treated by a CPU or GPU based system with a suitable performance at a lower cost. With the development of high level synthesis tools, the implementation of algorithms over FPGA is performed with a better design flow than traditional logic design. In this case, optimization techniques are performed at software level. In this document is presented a system designed to evaluate the performance of a stencil computation algorithm over a SoC FPGA at hardware level. The data-path is designed to perform the stencil computation algorithm using a one-dimensional array of processing elements and registers. System performance is evaluated for the approach to the numerical solution of a heat transfer problem modeled with the heat equation for the one-dimensional case. The proposed architectures are implemented in a ZedBoard Zynq Evaluation and Development Kit using Vivado Design Suite and Xilinx SDK.

Palavras-chave : FPGA; stencil computation; heat equation; finite differences.

        · resumo em Espanhol     · texto em Inglês     · Inglês ( pdf )

 

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License