SciELO - Scientific Electronic Library Online

 
 issue41Jet quenching at aliceCalculation of displacements per atom distributions in solid materials author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Nucleus

Print version ISSN 0864-084X

Abstract

PADILLA CABAL, Fátima; MARTIN HERNANDEZ, Guido  and  ABRAHANTES QUINTANA, Arian. Design and optimization of a beam-shaping assembly for BNCT based on a neutron generator. Nucleus [online]. 2007, n.41, pp.30-38. ISSN 0864-084X.

A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy. Two figures-of-merit, i.e. the absorbed dose for healthy tissue and the absorbed tumor dose at a given depth in the brain are used to measure the neutron beam quality. Also irradiation time, therapeutic gain and the power generated in the target are utilized as beam assessment parameters. Moderators, reflectors and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions (d;n) and (d;n) down to a suitable energy spectrum. Metallic uranium and manganese are successfully tested for fast-to-epithermal neutron moderation as well as FluentalTM for the neutron spectrum shifting. A semispherical target is proposed in order to dissipate twice the amount of power generated in the target, and decrease all the dimensions of the BSA. The cooling system of the target is also included in the calculations. Calculations are performed using the MCNP code. After the optimization of our beam-shaper a study of the dose distribution in the head had been made. The therapeutic gain is increased in 9% while the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for Boron Neutron Capture Therapy.

Keywords : neutron capture therapy; boron; brain, therapy; m codes; neutron generators; specifications; beam shaping; configuration; neutron beams; neutron sources; radiation dose distributions; radiation doses; simulation; accelators; neoplams.

        · abstract in Spanish     · text in Spanish     · Spanish ( pdf )