SciELO - Scientific Electronic Library Online

vol.29 issue3Evidences of autochthonous infection by Borrelia burgdorferi sensu lato in CubaGenetic characterization of Pneumocystis jirovecii in patients dying of AIDS, IPK, 1995-2008 author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand




  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO


Biotecnología Aplicada

On-line version ISSN 1027-2852


GRANADILLO, Milaid et al. A novel strategy to improve antigen presentation for active immunotherapy in cancer. Fusion of the human papillomavirus type 16 E7 antigen to a cell penetrating peptide. Biotecnol Apl [online]. 2012, vol.29, n.3, pp.194-197. ISSN 1027-2852.

Facilitating the delivery of exogenous antigens to antigen-presenting cells, ensuing processing and presentation via the major histocompatibility complex class I and induction of an effective immune response are fundamental for an effective therapeutic cancer vaccine. In this regard, we propose the use of cell-penetrating peptides fused to a tumor antigen. To demonstrate this concept we designed a fusion protein comprising a novel cell-penetrating and immunostimulatory peptide corresponding to residues 32 to 51 of the Limulus anti-lipopolysaccharide factor protein (LALF32-51) linked to human papillomavirus 16 E7 antigen (LALF32-51-E7). In this work, we demonstrated that the immunization with LALF32-51-E7 using the TC-1 mouse model induces a potent and long-lasting anti-tumor response supported on an effective E7-specific CD8+ T-cell response. The finding that therapeutic immunization with LALF32-51 or E7 alone, or an admixture of LALF32-51 and E7, does not induce significant tumor reduction indicates that covalent linkage between LALF32-51 and E7 is required for the anti-tumor effect. These results support the use of this novel cell-penetrating peptide as an efficient means for delivering therapeutic targets into cellular compartments with the induction of a cytotoxic CD8+ T lymphocyte immune response. This approach is promissory for the treatment of tumors associated with the human papillomavirus 16, which is responsible for the 50% of cervical cancer cases worldwide and other malignancies. Furthermore, protein-based vaccines can circumvent the major histocompatibility complex specificity limitation associated with peptide vaccines providing a greater extent in their application.

Keywords : fusion protein; E7; cell-penetrating peptides; LALF32-51; human papillomavirus.

        · abstract in Spanish     · text in English     · English ( pdf )