SciELO - Scientific Electronic Library Online

 
vol.54 issue1Use of agroindustrial residues for producing enzymes by Bacillus subtilis E 44Production of lignocellulases enzymes from Trichoderma viride M5-2 in wheat bran (Triticum aestivum) and purification of their laccases author indexsubject indexarticles search
Home Pagealphabetic serial listing  

Services on Demand

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Cuban Journal of Agricultural Science

On-line version ISSN 2079-3480

Abstract

SOLIS, C. et al. Changes in the in vitro ruminal fermentation dynamics of diets for cattle, based on corn grains and different levels of sweet potato (Ipomoea batatas, L.) integral silage. Cuban J. Agric. Sci. [online]. 2020, vol.54, n.1, pp. 45-54.  Epub Mar 01, 2020. ISSN 2079-3480.

In vitro ruminal fermentation dynamics of isoenergetic (10.9 MJ ME kg-1) and isoproteic (12.1% CP) diets for cattle were determined, with gradual replacement levels of 0.0 (T0, control), 32.4 (T32), 77.6 (T78) and 100.0% (T100) of ground corn grain, on a dry basis, mainly by integral sweet potato silage. Accumulated gas production during the 96 h of in vitro fermentation was analyzed with a mixed generalized linear model. The increases in gas production during the initial stage were 73.0, 80.0, 98.0 and 103.8, in the intermediate stage were 82.0, 75.5, 73.2 and 70.5, and in the final were 50.0, 51.8, 45.2 and 44.8 mL g-1 of incubated organic matter (incOM) for T0, T32, T78 and T100, respectively. In the initial stage, the highest increases of T78 and T100 were attributed to the greater availability of soluble carbohydrates and sugars. In the intermediate period, the increase in T0 was explained by the degradation of protein matrix that surrounds corn starch. In the final stage, the lower increases were related to the limited availability of fermentable substrates and microbial recycling. On average, T78 and T100 showed greater fermentative potential (259.2 mL.g-1 incOM), microbial efficiency rate (0.13), maximum speed (12.4 mL.g-1 incOM h-1) and less time to reach maximum speed (9.90 h). It is concluded that, in in vitro conditions, diets with sweet potato integral silage provided greater nutrient availability for ruminal microorganisms, which favors energy supply for the different metabolic processes in the rumen.

Keywords : fermentation; diets; starch; maximum speed; microbial efficiency.

        · abstract in Spanish     · text in English | Spanish     · English ( pdf )