SciELO - Scientific Electronic Library Online

 
vol.12 issue4Phast System acrylamyde gel electrophoresis and chromatography method standardization for the characterization of new vaccine antigens and culture media componentsProcedures for obtaining the biological reagents for the DAVIH Ag P24 and DAVIH Ac P24 kits author indexsubject indexarticles search
Home Pagealphabetic serial listing  

My SciELO

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Vaccimonitor

Print version ISSN 1025-028XOn-line version ISSN 1025-0298

Vaccimonitor vol.12 no.4 Ciudad de la Habana Oct.-Dec. 2003

 

ARTICULOS ORIGINALES

 

Evaluación de la eficacia de VA-MENGOC-BC® en ratón Balb/c retados frente a los serogrupos A, B y C.

 

VA-MENGOC-BC® efficacy evaluation in Balb/c mice challenged with serogroups A, B and C.

 

Juan Francisco Infante, Sergio Sifontes, Eddy Caro, Mildrey Fariñas, Armando Cádiz, Armando Acosta, Marielena Sarmiento.


Instituto Finlay. Centro de Investigación-Producción de Vacunas y Sueros. Ciudad de La Habana. Cuba. E-mail: jinfante@finlay.edu.cu


RESUMEN

Hasta la fecha se han desarrollado varios modelos experimentales para la reproducción experimental de la enfermedad meningocócica humana, cuya utilidad en la evaluación de la eficacia de medios de inmunización y terapia, así como en el estudio de la patogenia de la enfermedad es incuestionable. En el presente trabajo se describe la evaluación de la eficacia de VA-MENGOC-BC® y la Inmunoglobulina Humana Antimeningocócica BC frente a Neisseria meningitidis de los serogrupos A, B y C, empleando el ratón Balb/c tratado con mucina y dextrana férrica como estimulantes de la virulencia. Los ratones fueron inmunizados por vía intraperitoneal con una, dos o tres dosis de 0,5 mL de VA-MENGOC-BC®. El intervalo entre dosis fue de tres semanas entre la primera y segunda dosis y de 15 días entre la segunda y la tercera. El reto se realizó con dosis letales (1-3 x DL50) de N. meningitidis A, B ó C a los 15 ó 21 días después de aplicada la última dosis de vacuna. Para evaluar la actividad de la Inmunoglobulina Antimeningocócica BC como medio de inmunización pasiva, se trató otro grupo de ratones, 30 min, 2 y 6 h después habérseles inoculado los gérmenes. Se administraron en cada caso 5 mg de la inmunoglobulina por vía intraperitoneal o intravenosa en un volumen de 0,1 mL. Los resultados demostraron que tanto VA-MENGOC-BC® como la Globulina Antimeningocócica BC confieren protección significativa contra un reto letal con N. meningitidis en el modelo de ratón tratado con factores estimulantes de la virulencia.

Palabras claves: VA-MENGOC-BC®, Inmunoglobulina Humana Antimeningocócica BC, ratón, mucina, dextrana férrica, reto, protección.


ABSTRACT

There are several animal models for the experimental reproduction of human meningococcal disease. Their usefulness in the evaluation of immunization and therapy, as well as in the pathogenesis of the disease is unquestionable. The present paper describes the assessment of the efficacy of VA-MENGOCBC ® and the Human BC Antimeningococcal Globulin against Neisseria meningitidis groups A, B and C using mice treated with iron dextran and mucin as virulence enhancers. Mice were immunized intraperitoneally with one, two or three doses (0.5 mL) of VA-MENGOC-BC®. The time elapsed between the first and a second dose was three weeks and 15 days between the second and the last one. The challenge was performed with lethal doses (1-3xDL50) of N. meningitidis A, B or C, 15 or 21 days after the last immunizing dose. In order to test the efficacy of the Human Antimeningococcal Globulin as a means of passive immunization, a different group of mice was treated 30 min, 2 h and 6 h after bacterial inoculation. Five milligrams of globulin were administered intravenously or intraperitoneally to each mouse. Results demonstrated that VA-MENGOC-BC® and the Human BC Antimeningococcal Globulin confer significant protection against a lethal challenge with N. meningitidis A, B and C in mice treated with virulence enhancement agents.

Keywords: VA-MENGOC-BC®, Human Antimeningococcal Globulin BC, mouse, mucin, iron dextran, challenge, protection.


Texto completo formato PDF

REFERENCIAS

1. Goldberg WJ, Bernstein JJ. Migration of cultured foetal spinal cord astrocytes into adult host cervical cord and medulla following transplantation into thoracic spinal cord. J Neurosci Res. 1988; 19:34-42.

2. Buchanan RM, Arulanandam BP, Metzger DW. IL-12 enhances antibody responses to T-independent polysaccharide vaccines in the absence of T and NK cells. J Immunol. 1998; 161(10):5525-33.

3. Hanaberg B., Dalseg R., Oftung F., et al. Towards a nasal vaccine against meningococcal disease, and prospects for its use asa mucosal adjuvant. Dev. Biol. Stand.1998; 92:127-33.

4. Stojiljkovic I., Hwa V., Larscen J., et al. Cloning and characterization of the Neisseria meningitidis rfaC gene encoding alpha- 1,5 heptosyltransferase I. Fems Microbiol Lett. 1995; 151(1):41-9.

5. Pérez -Martín O, Lastre- González M, Díaz- Orellana M, Zayas- Vignier C, Caso R, Hernández I, Sierra-González G.: Biodistribution of the Cuban antimeningococcal vaccine, VA-MENGOC-BC, in Balb/c mice. Arch. Med. Res. Spring 1997; 28(1):37-40.

6. SAGE. Plan of activities for 1996, including full report of the research an development subgroup session of the meeting of the scientific advisory group of Vaccine Research an development (VRD) elicit Global program for vaccines an immunization. experts June 1999; 12-14.

7. Pettersson A, Kuipers A.J, Pelzer M,Verhangen EPM, et al. Monoclonal antibodies against the 70-kilodalton iron- regulated protein of Neisseria meningitidis are bactericidal and strains-specific. Infect. Immun. 1990; 58:3036-3041.

8. Danve B, Lissolo L, Mignon M, Dumas P, Colombani PP, Colombani AB, at al. Tranferrin -binding protein isolated from Neisseria meningitides protective and bactericida antibodies. Laboratory Animals Vaccine. 1993; 11:1214- 1220.

9. Frasch CE, Tsai CM. Mocca LF. Outer membrane proteins of Neisseria Meningitidis: Structure and importance in meningococcal disease. Clin. Invest. Med. 1986; 9:101-107.

10. Saukkonen K, Abdillahi H, Poolman JT, Leinonen M. Protective efficacy of monoclonal antibodies to class 1 and class 3 outer membrane proteins of Neisseria meningitidis B:15:P1:.16 in infant rat infection model: new prospects for vaccine development. Microbiol. Pathogen. 1987; 3:261.

11. Fernández de Cossio M F, Dhlin M, Selander B, Cruz S, Del Valle J, Burrebaeck CA. Human monoclonal antibodies against an epitope on the class 5c outer membrane protein common to many pathogenic strain of Neisseria meningitidis . J. Infect .Dis. 1992; 166:1322-1328.

12. Verheul AF, Kuipers AJ, Braat AK, Dekker HA, Peeters CC, Snippe H, Poolman JT. Development characterization and biological properties of meningococcal immunotype L3,7(8),9 specific monoclonal antibodies. Clin . Diag . Lab . Immunol. 1994; 1: 729-736.

13. Poolman JT. Clinical trial with outer membrane protein vaccine and Por A recombinant vaccine. 10th International Pathogenic Neisseria Conference. Sept. 8-13 1979; Baltimore Maryland. 1996.

14. Martin D, Cadieux N, Hamel J, Brodeur BR. Highly: Conserved Neisseria meningitidis surface protein with different protection against. Experimental infection .J Exp .Med. 1997; 185(7):1173- 1183.

15. Manning DS, Reschke DK, Judd RC. Omp85 proteins of Neisseria gonorrheae and Neisseria meningitidis are similar to Haemophilus influenzae D-15-Ag and Pasteurella multocida oma 87. Microb. Pathog. 1998; 25 (1):11-21.

16. Westerink MA, Giardina PC, Apicella MA, Kieber-Emmons T. Peptide mimicry of the meningococcal group C capsular polysaccharide. Proc Natl Acad Sci USA. 1995; 92(9):4021-5.

17. Ala' Aldeen DA, Westphal AH, De Kok A, Weston V, Atta MS, Baldwin TJ Bartley J, Borriello SP. Cloning, sequencing, characterization and implications for vaccine design of the novel dihydrolipoyl acetyltransferase of Neisseria meningitidis J. Med. Microbiol. 1996; 45(6):419 - 32 .

18. Gómez JA, Agra C, Ferron L, Powel N, Pintor M, Criado M, Ferreiros CM: Antigenicity, cross - reactivity and surface exposure of the Neisseria meningitidis 37 kDa protein (Fbp). Vaccine. 1996; 14(14):1340-6

19. Ferron L, Ferreiros CM, Criado MT, Pintor M. Immunogenicity and antigenic heterogeneity of a human transferrin-binding protein in Neisseria meningitidis. Infect. Immun. 1992; 60(7):2887-92.

20. Colino J, Outshoorn I. Dynamics of the murine humoral immune response to Neisseria meningitides group B capsular polysaccharide. Infect. Immun. 1998; 66(2):505-

21. Christodoulides M, Heckels JE. Immunization with a multiple antigen peptide containing defined Band T-cell epitopes. Production of bactericidal antibodies against group B Neisseria meningitidis. Microbiology. 1994; 140 (PL 11): 2951-60.

22. Costantino PS, Viti A, Podda MA, Velmote L. Mencioni and phase 1 clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine. 1992; (10):691-698.

23. Anderson EL, Bowers T, Menk C, Kennedy DY, Belshe RB, Harakel H, Holder P, Calone GM. Safety and immunogenicity of meningococcal A and C polysaccharide conjugate vaccine in adults. Infect . Immun. 1994; (62):3391-3395.

24. Zakirov MM, Petrov AB, Burkhanov SA, Vartania IuP, Torchilin VP, Trubetskoi US et al. The immunological activity of Neisseria meningitides lipo-oligosaccharide incorporated into liposomes. Zh Mikrobiol. Epidemiol. Immunbiol. 1995; (1):49-53.

25. Bhattacharjee AK, Opal SM, Taylor R, Naso R, Semenuk M, Zollinger WD, Moran EE, Young L, Hammack C, Sadoff JC, Cross AS. A noncovalent complex vaccine prepared with detoxified Escherichia coli J5 (Rc chemotype) lipopolysaccharide and Neisseria meningitides Group B outer membrane protein Produces protective antibodies against gram-negative bacteremia. J. Infect. Dis. 1996; 173 (5):1157-63.

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License