SciELO - Scientific Electronic Library Online

 
vol.43 issue1Super Resolution DOA Estimation System Hardware-Software ImplementationAlgorithm to detect bursts in water pipes for implementation in low-power devices author indexsubject indexarticles search
Home Pagealphabetic serial listing  

My SciELO

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Ingeniería Electrónica, Automática y Comunicaciones

On-line version ISSN 1815-5928

EAC vol.43 no.1 La Habana Jan.-Apr. 2022  Epub June 11, 2022

 

Artículo original

Diseño del módulo de generación y el filtro adaptado para radar de compresión de pulso

Design of the generation module and matched filter for pulsed compression radar.

Eciel Acuña Tamayo1  * 
http://orcid.org/0000-0002-9991-0500

Addiel Peña Sierra2 
http://orcid.org/0000-0001-5460-5951

Ricardo J. Castillo Blanco2 
http://orcid.org/0000-0001-8373-1623

Ernesto Fagundo Sierra2 
http://orcid.org/0000-0002-5027-8612

Juan Carlos Lazo Lezcano2 
http://orcid.org/0000-0002-1555-997X

1 Universidad Tecnológica de la Habana José Antonio Echeverría, CUJAE. La Habana, Cuba

2 Centro de Investigación y Desarrollo de Electrónica y Mecánica “CID MECATRONICS”. Cuba

RESUMEN

El presente artículo aborda el empleo de código bifásico para su aplicación como señal excitadora en radares de compresión de pulso. Se exponen sus características principales y se describe el diseño digital de secciones para la modulación, recepción y compresión. Fue empleado el lenguaje de descripción de hardware de circuitos integrados de muy alta velocidad (VHDL) para su implementación y MATLAB® para la simulación, modelación y síntesis en VHDL de bloques funcionales. Se emplea un código de 32 bits con el que se garantiza 20.56 dB de relación PSR (Peak to Sidelobe Level Ratio, por sus siglas en inglés). El aporte de la propuesta radica en la demostración de dos métodos de síntesis de la convolución para una señal BPSK. Los cuales son descritos, en conjunto con las ecuaciones de diferencias finitas que los definen y se presentan los principales recursos empleados para su síntesis en el kit de desarrollo DE10-Standard.

Palabras claves: BPSK; PSR; Nyquist; FPGA

ABSTRACT

The present work deals with the use of biphasic codes for their application as an exciting signal in pulse compression radars. Its main characteristics are exposed and the digital design of sections for modulation, reception and compression is described. Very High-Speed Integrated Circuit Hardware Description Language (VHDL) was used for its implementation and MATLAB® for simulation, modelling and synthesis in VHDL of functional blocks. A 32-bits code is used with witch a 20.56 dB Peak to Sidelobe Level Ratio (PSR) is guaranteed. The contribution of the proposal lies in the demonstration of two convolution synthesis methods for the BPSK signal. Is presented and described its finite difference equation that define both of the convolution methods and also presented main resources used for their synthesis on DE10-Standard Development Kit.

Keywords: BPSK; VHDL; PSR); Nyquist; FPGA

Referencias

1. López, H.G.; Águila, E.R.; Ferry, N.C.; Padilla, A.G. Diseño de la señal excitadora y del filtro adaptado para un radar de compresión de pulsos. Revista Cubana de Ingeniería. 2013; 4(3): 53-59. [ Links ]

2. Wu J. Advanced Metric Wave Radar. 1 ed. Hefei, China: Springer and National Defense Industry Press; 2015. [ Links ]

3. D'Souza A.V., Ravi D.J. In-Phase an Quadrature-Phase Sinusoidal Signal Generation Using DDS Technique. IETE Journal of Research. 2021; 1(1): 1-8. [ Links ]

4. Kim K.-R., Kim S., Ki C.-H., Kim T.-H., Yang H., Kim J.-H. Development and comparison of DDS Multi-DDS Chirp waveform generator. IEEE. 2019; 1(19): 8606-8609. [ Links ]

5. R Y.S., Kulkarni S., Kumara M. Waveform generation using Direct Digital Synthesis (DDS) Technique. International Research Journal of Engineering and Technology. 2019; 6(11): 2001-2005. [ Links ]

6. Hou Y., Li C., Tang S. An Accurate DDS Method Using Compound Frequency Tuning Word And Its FPGA Implementation. Electronics. 2018; 7(330): 1-14. [ Links ]

7. Tang L., Zhu Y., Fu Q. Fast algorithm for designing periodic/aperiodic sequences with good correlation and stopband properties. EURASIP Journal on Advances in Signal Processing. 2018; 1(57): 1-13. [ Links ]

8. Ly P.Q.C., Sirianunpiboon S., Elton S.D. Passive Detection of BPSK Radar Signals with Unknown Parameters using Multi-Sensor Arrays. 2017 th International Conference on Signal Processing and Communication Systems (ICSPCS). 2017; 4(17): 1-5. [ Links ]

9. Ghaferi H., Pishrow M.M. Optimization of Matched and Mismatched Filters in Short Range Pulse Radars using Genetic Algorithm. International Journal of Image, Graphics and Signal Processing (IJIGSP). 2016; 8(5): 43-51. [ Links ]

10. Mahafza B.R. Radar Systems Analysis and Design Using MATLAB®. 3 ed. Huntsville, Alabama, USA: CRC Press; 2013. [ Links ]

11. Giovanni Galiero G.A., Adirosi D. “Spurious” Analysis of a Wide Bandwidth Undersampled Digitally Heterodyned SFGPR. IEEE. 2011; 11: 1-5. [ Links ]

12. Rathore R.P.S. Reconfigurable digital radar receiver implemented in FPGA using Under-sampling, Direct IQ generation, Multi-rate filter and Pulse compression. IEEE International Microwave and RF Conference (IMaRC). 2014; 14: 174-177. [ Links ]

13. Metwally I.M., Elbardawiny A.E.R.H., Ahmed F.M., Fahim H.Z. Design and Implementation of Pulse Compression Radar Waveforms Digital Generator and Processor with Real Time Side-lobes Suppression Optimum Filter on FPGA. IEEE. 2020; 1(20): 228-233. [ Links ]

14. Guillén C., Martínez L., Chávez N. FPGA Implementation of a Low Cost and Flexible Pulse Compression System. IEEE LATIN AMERICA TRANSACTIONS. 2017; 15(9): 1608-1612. [ Links ]

15. Maznu S., Pasha I.A., Reddy C. Hybrid-PSK/FH (Bi-Alphabetic) waveform for target Detection in High Resolution, K-Band LPI Radar System. International Journal of Advanced Research in Computer Engineering & Technology. 2018; 13(2): 1265-1273. [ Links ]

16. Mutz D., George K. Costas Loop and FFT based BPSK Demodulation for Pulsed Radar Receivers. 2016 IEEE Aerospace Conference. 2016; 1(16): 1-12. [ Links ]

17. Camilin M.K., Sangeetha K.S., Rajasekar B. FPGA Implementation of ASK, BPSK and QPSK Modulator Using Hardware Co-Simulation. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016; 7(4): 194-204. [ Links ]

18. Suganthi K., Abinaya A. Design and Implementation of Numerrically Controlled Oscillator. International Conference on Computer Communication and Information (ICCCI). 2019; 19(1): 1-4. [ Links ]

19. Guo L., Tan F., Zhang P., Zeng H. Decomposing Numerically Controlled Oscillator in Parallel Digital Down Conversion Architecture. Journal of Circuits, Systems and Computers. 2017; 26(9): 1-6. [ Links ]

20. Hosking R.H. Software-Defined Radio Handbook. 12 ed: Pentek, Inc.; 2016. [ Links ]

21. Liu X., Yan X.-X., Wang Z.-K., Deng Q.-X. Design and FPGA Implementation of a Reconfigurable Digital Down Converter for Wideband Applications. Transactions on Very Large Scale Integration (VLSI) systems. 2017; 15(12): 3548-3552. [ Links ]

Recibido: 15 de Enero de 2022; Aprobado: 26 de Abril de 2022

*Autor para la correspondencia: eciel.tamayo@gmail.com

Ninguno de los autores manifestó la existencia de posibles conflictos de intereses que debieran ser declarados en relación con este artículo.

Eciel Acuña Tamayo: Conceptualización, Software, Metodología, Validación - Verificación, Redacción - Revisión y Edición, Investigación.

Addiel Peña Sierra: Conceptualización, Metodología, Validación -Verificación.

Ricardo J. Castillo Blanco: Conceptualización, Metodología, Investigación, Validación -Verificación.

Ernesto Fagundo Sierra: Conceptualización, Metodología, Software, Validación - Verificación, Redacción - Revisión y Edición.

Juan Carlos Lazo Lezcano: Conceptualización, Metodología, Investigación.

Eciel Acuña Tamayo, Ing. Radioelectrónico ITM “José Martí”, optante al título académico de M.Sc. en Sistemas Digitales en la Universidad Tecnológica de la Habana José Antonio Echeverría, CUJAE, Centro de Investigación y Desarrollo de Electrónica y Mecánica “CID MECATRONICS”, La Habana, Cuba. Email: eciel.tamayo@gmail.com, ORCID: 0000-0002-9991-0500.

Addiel Peña Sierra, Ing. Radioelectrónico ITM “José Martí”, optante al título académico de M.Sc. Radioelectrónica ITM, Centro de Investigación y Desarrollo de Electrónica y Mecánica “CID MECATRONICS”, La Habana, Cuba. Email: apscrrd0402@outlook.com, ORCID: 0000-0001-5460-5951.

Ricardo J. Castillo Blanco, Ing. Radioelectrónico ITM “José Martí”, optante al título académico de M.Sc. en Radioelectrónica ITM, Centro de Investigación y Desarrollo de Electrónica y Mecánica “CID MECATRONICS”, La Habana, Cuba. Email: rikardojcast@gmail.com ORCID: 0000-0001-8373-1623.

Ernesto Fagundo Sierra, Ing. Radioelectrónico ITM “José Martí”, M.Sc. Radioelectrónica, Centro de Investigación y Desarrollo de Electrónica y Mecánica, “CID MECATRONICS”, La Habana, Cuba. Email: ernesto1312@nauta.cu, ORCID: 0000-0002-5027-8612.

Juan Carlos Lazo Lezcano, Ing. Radioelectrónico ITM “José Martí”, M.Sc. Radioelectrónica, Centro de Investigación y Desarrollo de Electrónica y Mecánica, “CID MECATRONICS”, La Habana, Cuba. Email: juanc@nauta.cu, ORCID: 0000-0002-1555-997X.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons