SciELO - Scientific Electronic Library Online

 
vol.30 issue2Salinity-sugarcane cultivation relationship determined by remote sensing at the Urbano Noris Sugar MillDesign of Sprinkling Irrigation System with Wind Pumping in the Garlic Cultivation author indexsubject indexarticles search
Home Pagealphabetic serial listing  

My SciELO

Services on Demand

Journal

Article

Indicators

  • Have no cited articlesCited by SciELO

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista Ciencias Técnicas Agropecuarias

On-line version ISSN 2071-0054

Rev Cie Téc Agr vol.30 no.2 San José de las Lajas Apr.-June 2021  Epub Apr 01, 2021

 

ORIGINAL ARTICLE

Effect of Vibrations and Operational Parameters in Frequency and Amplitude of a Vibratory Subsoiler

MSc. Luis Orlando Marín-Cabrera1  * 

Dr.C. Armando Eloy García de la Figal-Costales1 

Dr.Cs. Arturo Martínez-Rodríguez1 

1Universidad Agraria de La Habana (UNAH), Facultad de Ciencias Técnicas, Centro de Mecanización Agropecuaria (CEMA), San José de las Lajas, Mayabeque, Cuba.

ABSTRACT

This paper aims to analyze the effect of free and forced vibrations and of working depth on the frequency and amplitude of a vibratory curved bent leg subsoiler plowing a silt loam soil (Rhodic Ferralsol) by the modal analysis of the soil-bent leg system. The finite elements method and the design software Solid Works with its complement Simulation were used to model and to simulate, the bent leg scarifier­ soil interaction. The soil was considered as homogeneous and elastoplastic of Drucker-Prager extended constitutive relation. The results showed the significant effect of the work depth on the frequencies and amplitude of the soil when the vibratory system works with free vibrations. When forced vibrations were used to different work depths, significant differences were not observed in frequencies neither of the bent leg nor of the soil. On the other hand, the resonant frequencies of the shank obtained corresponding to the two first vibration modes (2,20; 8,47 and 13,35 Hz) at a working depth of 200 mm allowed a better loosening of the soil.

Keywords: Subsoiler; Free Vibrations; Forced Vibrations; Working Depth

INTRODUCTION

The mechanical manipulation of the soil is made by the using of farming tools or implements, which make to soil appropriate for the growth and development of plants (Ani et al., 2014; Prem et al., 2016). It is well known that the vibrations of tractive farming tools (knives, chisels, etc.), reduce the necessary force for their movement through the soil, which is highly desirable for the implements that require to diminish draft force like subsoiler and produce better break of the soil, although the total requirements of power cannot be reduced (Larson, 1967; Smith et al., 1972). The tillage tool vibrations were presented in 1955 by Gunn and Tramontini cited by Rao et al. (2018). With the draft force reduction by means of the use of vibratory tools, it is possible to carry out operations of deep farming like subsoiling, with tractors of little tractive class and to achieve smaller compaction of the soil (Bandalan et al., 1999), with more efficiency in its crumbling (Rao et al., 2018). These tools oscillate longitudinally or transversely, with frequencies of 2 to 14 Hz and amplitudes of 1,6 to 9,6 mm (Luna & González, 2002), along the direction of movement advance, that can be linear or curve, regarding the reference system of the implement, and the vibration way can be longitudinal or transverse. The oscillation plane can be vertical, horizontal or to have some inclination in the three-dimensional space (Rao & Chaudhary, 2018).

Investigations related with the use of vibratory tools have been developed by Shkurenko (1966), Sulatisky & Ukrainetz (1972), Butson & MacIntyre (1981), Zhang (1997), Bandalan et al. (1999), Karoonboonyanan et al. (2007) and Shahgoli et al. (2010). All these studies had the objective of determining the optimum vibration modes, operational and geometric parameters, as well as the required power and their effect in the magnitude of the necessary draft forces for breaking the soil.

Shkurenko (1960) carried out experiments with the bent leg oscillations in horizontal and vertical direction, frequencies of 100 and 210 Hz and 0.3 m. s-1 of forward speed. The draft force diminished from 50 to 60% when the width increased from 0 to 10 mm. Butson & MacIntyre (1981) carried out experiments to oscillation frequencies bigger than 50 Hz and widths of 8 mm, with forward speeds from 0.54 to 1.98 km. h-1. The draft force diminished above 50%, but the total consumption of power increased. However, Sulatisky & Ukrainetz (1972) reported that, reduction of the draft force as high as 80%, was achieved when the tool vibrated to frequencies higher than 30 Hz and widths bigger than 12 mm.

Bandalan et al. (1999) carried out experiments in a vibratory subsoiler of vertical right arm and plough share with lift angle of 30° and working width of 70 mm, tilling a compacted soil, with oscillation frequencies of 3,7; 5,67; 7,85; 9,48 and 11,45 Hz; widths of 18; 21; 23,5; 34 and 36,5 mm and forward speeds of 1,85; 2,20 and 3,42 km.h-1. The vibratory system diminished the traction force 0,33% and the consumption energy increased 1,24% regarding the system without vibrating. The subsoiler could not work to frequencies smaller than 5 Hz (resonance of the tool). However, Shahgoli et al. (2010) carried out experiments with vibratory subsoiler of two arms and cam mechanism, with right and curved plough share in loam-sandy soil oscillating with amplitude of ± 69 mm; oscillation angle 27º; forward speed of 3 km.h-1 and oscillation frequency of 1,9 to 8,8 Hz. They concluded that with frequencies near 3,3 Hz and forward speed of 1,5 km.h-1, the draft force diminished 26% compared with the rigid one.

The general objective of this study was to carry out a modal analysis of the soil-vibratory tool interaction by means of a simulation model with the finite elements method to determine the vibration modes and their specific frequencies (resonant) and to select the most appropriate ones for the operation of the system, as well as the effect of the work depth in the frequency and amplitude of vibrations.

MATERIAL AND METHODS

Model for Soil

The soil was modeled as continuous, homogeneous and elastoplastic, using the linear form of the extended Drucker-Prager model (Figure 1), utilized with success by Herrera et al. (2008a, 2008b), given the simplicity of it and the little quantity of necessary parameters for its implementation (González et al., 2014).

FIGURE 1 Extended linear Drucker-Prager model: a) meridional plane b) Main stresses plane.  

Properties and Soil Parameters

The soil taken as study object was classified as Rhodic Ferralsol (Hernández et al. (2015), with density of 1050 kg·m-3, plasticity index of 36.1% and matter content of 2.8%. The elasticity module (E) was determined as the slope of a tangent straight line to the curve effort-deformation in its right tract, obtained for this type of soil by De la Rosa et al. (2014). The values of the soil properties required by the simulation model in finite elements (Table 1) were obtained from García de la Figal (1978, 1991), Herrera et al. (2008a, 2008b) and De la Rosa et al. (2014).

The values of the properties and soil parameters required by the simulation model in finite elements are shown in the Table 1.

TABLE 1 Properties and soil parameters required by the FEM model 

Property or parameter Symbol Dimension
Friction internal angle φ
Modulus of elasticity E 1575 kPa
Shear modulus G 1793 kPa
Poisson's ratio ν 0,22
Cohesion c 15 kPa
Soil humidity Ha 27%
Density γ 1.05 g.cm-3
Shear resistance τ 190 kPa
Shear modulus G 1 793 kPa
Traction limit of soil σ t 20 kPa
Compression limit of soil σ c 480 kPa
Elastic limit of soil σ e 42 kPa
Soil-metal friction angle δ 30.5º
Type of soil Linear elastoplastic

Simulation Model of the Interaction Soil-Vibratory Farming Tool

The model is composed by the subsoiler (with curved bent leg and logarithmic profile), the soil block, the vibrant mechanism and the interaction surfaces between both (Figure 2). The bent leg moves in the direction of the X axis to constant speed and working depth ae, vibrations frequency of the vibrating mechanism of 0.1 Hz and amplitude of 4 mm. It has angular movement freedoms in the vertex of the phase angle (θ) and linear in the X and Y axes. The lift angle (α) is 25° and the amplitude is 78 mm. The soil block has movement restrictions in lateral, posterior and inferior surfaces. Its dimensions are: length L (2 m), height H (0.9 m) and width B (1 m). The area of the tip surface is 0,0017 m2 and of the attack surface 0,018 m2. The width of the cut soil prism (b0) coincides with the rake width. An increase of the dimensions of the soil prism, beyond those assigned, as a result of the interaction with the bent leg, can be rejected (Ibrahmi et al., 2015; Marín & García de la Figal, 2019).

FIGURE 2 Tridimensional model of the system. 

The equation of the displacement (damped forced vibrations) is:

x(t)=X×sen(ωtθ) (1)

where: X -amplitude of vibrations, mm; ω- frequency of vibrations, Hz

The speed is given by:

x˙=X×ω×cos(ωtθ) (2)

The period of the vibration (T) is calculated by:

T=2πω (3)

The frequency of the vibrations is given by:

f=1T=ω2π (4)

The natural frequency is calculated by:

ωn=km (5)

being: k - elastic constant of spring; m - spring mass;

The equation of displacement in the non-damped free vibratory movement is:

x(t)=Xsen(ωnt+ϕ) (6)

The speed equation is:

x˙(t)=ωnXcos(ωnt+ϕ) (7)

For the modal analysis of the simulation model, three working depths (ae) were used: 200, 300 and 400 mm and two vibration modes: free non-damped and forced damped. The forward speed was kept constant Vm = 0,6 m.s-1, the mesh density (size of elements) ae = 6 mm, with mesh control of the surfaces in contact, both the plough shares and the soil prism e rp = 4 (Marín et al., 2020).

RESULTS AND DISCUSSION

Bent leg Modal Analysis

The free non-damped and forced damped vibration modes were simulated. The first fifteen modal forms for both and their corresponding resonant frequencies (f nb ) were obtained and the two first vibration modes were the most appropriate for the operation of the bent leg (Table 2). With the natural frequencies obtained with free non-damped vibrations f nbl = 2,21; 13,35 Hz and forced damped vibrations f nbf = 8,48 Hz, bigger soil crumbling was achieved as well as a diminishing of the draft force and power requirements. Similar frequencies of: 3,7, 5,67, 7,85 and 9,48 Hz, were employed by Bandalan et al. (1999) in field experiments with a vibratory subsoiler of simple arm and they obtained the highest values in reduction of the draft force in the longitudinal plane (0.33%) and power requirements (1.24%), with a frequency of 9,48 Hz, vibration amplitude of 36,5 mm and forward speed of 0,61 m. s-1.

TABLE 2 Bent leg resonant frequencies: a) free non-damped vibrations b) Forced damped vibrations 

a) b)
Mode Frequency (rads) Frequency (Hz) Period (seg) Frequency (rads) Frequency (Hz) Period (seg)
1 13.884 2.2097 0.45255 2.8767 0.45784 2.1842
2 83.924 13.357 0.074867 53.26 8.4767 0.11797
3 387.18 61.622 0.016228 184.46 29.357 0.034063
4 961.29 152.99 0.0065362 839.61 133.63 0.0074835
5 2078 330.72 0.0030237 1758.6 279.9 0.0035727
6 2181.5 347.19 0.0028802 1952.6 310.77 0.0032178
7 2526.2 402.06 0.0024872 2390.2 380.41 0.0026287
8 3844.1 611.82 0.0016345 3444.6 548.23 0.001824
9 4303.7 684.96 0.0014599 3730.6 593.74 0.0016842
10 4699.3 747.92 0.0013371 4234.1 673.89 0.0014839
11 5091.5 810.34 0.0012341 4437.2 706.19 0.001416
12 6006.5 955.97 0.0010461 5812.1 925.03 0.001081
13 6760.6 1076 0.0009293 6058.2 964.19 0.0010371
14 7542.5 1200.4 0.000833 7159.4 1139.5 0.00087762
15 8325.3 1325 0.0007547 7994.3 1272.3 0.00078596

For the bent leg with free non-damped vibrations and the modal forms1 and 2 (Figure 3a), the bent leg can work the soil without risks of the resonance effect, because the frequencies obtained in both modal forms allow its appropriate work. For the bent leg with forced damped vibrations (Figure 3b), the modal form 1 is near a resonant condition (f nbf = 0,45 Hz), and that is why it is not the most appropriate for the operation of the vibratory system. The modal form 2 (f nbf = 8,47 Hz) is the optimum. Similar results were obtained by Shahgoli et al. (2010), when they reached a reduction of the draft force of 26% to a frequency of 8,8 Hz in the longitudinal plane, amplitude of ± 69 mm, oscillation angle of 27° and forward speed of 0,83 m.s-1. However, Luna & González (2002) affirm that the best results for vibratory subsoilers are obtained for frequencies of 80-100 rad. s-1 (12-16 Hz) and amplitudes greater than 8 mm in a plane of vibrations (vertical), working depth between 300-400 mm and forward speeds between 0,56 and 1,4 m. s-1.

FIGURE 3 Resonant frequencies in the first two vibration modes: a) bent leg with free non-damped vibrations b) bent leg with forced damped vibrations. 

Modal Analysis of the Soil

The results of the frequency study carried out to the soil model to different working depths (Tables 3, 4 and 5) show that, to a depth ae=200 mm and the bent leg subsoiler with damped forced vibrations (Table 3b), the most appropriate values of soil natural frequencies are obtained for its loosening (2,63; 4,13; 8,15; 11,07 and 16,21 Hz).

TABLE 3 Resonant frequencies of the soil model (ae= 200 mm)  

a) b)
Mode Frequency (rads) Frequency (Hz) Period (seg) Frequency (rads) Frequency (Hz) Period (seg)
1 0.021701 0.0034538 289.54 0.013164 0.0020951 477.31
2 579.97 92.305 0.010834 0.019076 0.0030361 329.37
3 637.24 101.42 0.00986 6.5912 1.049 0.95327
4 649.29 103.34 0.009677 16.546 2.6334 0.37974
5 701.2 111.6 0.0089606 26.004 4.1386 0.24163
6 777.49 123.74 0.0080814 51.241 8.1552 0.12262
7 790.38 125.79 0.0079496 69.592 11.076 0.090286
8 817.58 130.12 0.0076851 101.86 16.212 0.061684
9 828.63 131.88 0.0075826 129.7 20.642 0.048445
10 850.64 135.38 0.0073865 142.17 22.627 0.044196
11 867.48 138.06 0.007243 190.51 30.321 0.032981
12 873.4 139.01 0.0071939 234.96 37.395 0.026742
13 925.1 147.23 0.0067919 261.13 41.56 0.024062
14 935.75 148.93 0.0067146 298.42 47.495 0.021055
15 941.92 149.91 0.0066706 352.19 56.052 0.01784

TABLE 4 Resonant frequencies of the soil model (ae= 300 mm) 

a) b)
Mode Frequency (rads) Frequency (Hz) Period (seg) Frequency (rads) Frequency (Hz) Period (seg)
1 516.25 82.163 0.012171 468.47 74.56 0.013412
2 583.26 92.829 0.010773 561.69 89.396 0.011186
3 606.84 96.581 0.010354 585.99 93.263 0.010722
4 691.38 110.04 0.0090879 667.4 106.22 0.0094144
5 749.66 119.31 0.0083813 720.82 114.72 0.0087167
6 762.34 121.33 0.008242 747.5 118.97 0.0084056
7 765.03 121.76 0.008213 758.99 120.8 0.0082784
8 776.87 123.64 0.0080878 766.79 122.04 0.0081941
9 789.33 125.63 0.0079601 785.55 125.02 0.0079985
10 839.71 133.64 0.0074826 836.73 133.17 0.0075093
11 857.04 136.4 0.0073313 837.85 133.35 0.0074992
12 859.91 136.86 0.0073068 850.02 135.28 0.0073918
13 870.26 138.51 0.0072199 863.44 137.42 0.0072769
14 919.53 146.35 0.006833 912.67 145.26 0.0068844
15 924.87 147.2 0.0067936 919.12 146.28 0.0068361

TABLE 5 Resonant frequencies of the soil model (ae= 400 mm) 

a) Free non-damped vibrations b)Forced damped vibrations
Mode Frequency (rads) Frequency (Hz) Period (seg) Frequency (rads) Frequency (Hz) Period (seg)
1 551.09 87.709 0.011401 477.05 75.925 0.013171
2 619.25 98.557 0.010146 583.77 92.91 0.010763
3 646.92 102.96 0.0097125 615.04 97.886 0.010216
4 734.29 116.87 0.0085569 688.95 109.65 0.00912
5 797.82 126.98 0.0078755 732.64 116.6 0.0085761
6 807.18 128.47 0.0077841 762.12 121.3 0.0082443
7 817.29 130.08 0.0076879 771.35 122.76 0.0081457
8 827.74 131.74 0.0075908 773.12 123.05 0.0081271
9 837.04 133.22 0.0075064 794.03 126.37 0.0079131
10 878.84 139.87 0.0071494 844.92 134.47 0.0074364
11 883.54 140.62 0.0071114 857.07 136.41 0.007331
12 910.39 144.89 0.0069016 865.95 137.82 0.0072558
13 928.34 147.75 0.0067682 869.82 138.44 0.0072236
14 968.19 154.09 0.0064896 928.76 147.82 0.0067652
15 986.92 157.07 0.0063665 928.97 147.85 0.0067636

The Figure 4 shows the modal forms of the soil prism that correspond to the modal forms 3,4,5,6,7 and 8 with forced damped vibrations to depth of 200 mm.

FIGURE 4 Modal forms of soil prism corresponding to vibration modes 3,4,5,6,7 and 8 with forced damped vibrations to a depth of 200 mm. 

Modal Analysis of the Bent Leg-Soil System

The statistical analysis (Table 6) included variance analysis, Scheffé (posteriori test for differences) and simple linear regression, for both free and forced vibrations.

TABLE 6 Modal analysis of bent leg-soil system 

Depth (mm) Vibration Bent leg frequency (Hz) Soil frequency (Hz)
Mean Deviation standard Minimum Maximum Mean Deviation standard Minimum Maximum
200 Forced 581,504 437,078 2,210 1325,000 19,958 18,677 0,002 56,050
Free 797,372 514,733 45,966 1583,500 118,582 37,338 0,003 149,910
300 Forced 581,504 437,078 2,210 1325,000 122,150 19,484 82,163 147,200
Free 797,372 514,733 45,966 1583,500 119,717 21,012 74,560 146,280
400 Forced 581,504 437,078 2,210 1325,000 129,392 20,284 87,709 157,070
Free 797,372 514,733 45,966 1583,500 129,364 20,303 87,718 157,190
Depth (mm) Vibration Bent leg amplitude (mm) Soil amplitude (mm)
Mean Deviation standard Minimum Maximum Mean Deviation standard Minimum Maximum
200 Free 15,807 20,082 2,330 68,200 0,335 0,116 0,120 0,530
Forced 7,835 4,592 3,300 16,200 0,076 0,011 0,055 0,101
300 Free 15,807 20,082 2,330 68,200 0,095 0,028 0,060 0,130
Forced 7,835 4,592 3,300 16,200 0,100 0,026 0,060 0,140
400 Free 15,807 20,082 2,330 68,200 0,114 0,041 0,064 0,208
Forced 0,837 0,459 0,330 1,620 0,130 0,050 0,064 0,231

Variance Analysis

It is shown in Table 7. Significant differences exist in the soil frequencies and amplitudes, for both free and forced vibrations.

TABLE 7 ANOVA 

Diferences Sum of squares Degree of freedom Quadratic mean Fisher Significance
Bent leg frequency (Hz) Between groups 0,000 2 0,000 0,000 1,000
Inside groups 8 023 566,900 42 191 037,307
Total 8 023 566,900 44
Soil frequency (Hz) Between groups 112 355,799 2 56 177,900 147,853 0,000
Inside groups 15 958,263 42 379,959
Total 128 314,062 44
Bent leg amplitude (mm) Between groups 0,000 2 0,000 0,000 1,000
Inside groups 16 938,412 42 403,296
Total 16 938,412 44
Soil width (mm) Between groups 0,531 2 0,266 49,770 0,000
Inside groups 0,224 42 0,005
Total 0,756 44

Frequency Analysis (free vibrations)

With free vibrations, to different working depths, the frequencies of the bent leg were not different (p=1); but in the frequencies of the soil significant differences were observed (p=0,000) between the depths 200 mm with 300 mm and 400 mm, respectively, but they were not observed between 300 mm and 400 mm (Table 8).

The changes in the magnitudes of the soil frequency are explained in 69,3% by the changes in the levels of the working depth (Figure 5). For each mm of depth increased or diminished, soil frequencies were increased or decreased 0,837 Hz. The changes of the soil frequency that are explained by other factors (residuals) are almost null (0,00).

TABLE 8 Multiple comparisons (free vibrations) 

Dependent variable (I) Depth (mm) (J) Depth (mm) Means differences (I-J) Standard error Signif. 95% confidence interval
Upper limit Lower limit
Bent leg frequency (Hz) Scheffé 200,0 300,0 0,000 159,598 1,000 -405,011 405,011
400,0 0,000 159,598 1,000 -405,011 405,011
300,0 200,0 0,000 159,598 1,000 -405,011 405,011
400,0 0,000 159,598 1,000 -405,011 405,011
400,0 200,0 0,000 159,598 1,000 -405,011 405,011
300,0 0,000 159,598 1,000 -405,011 405,011
Soil frequency (Hz) Scheffé 200,0 300,0 -102,191* 7,117 0,000 -120,253 -84,128
400,0 -109,433* 7,117 0,000 -127,495 -91,370
300,0 200,0 102,191* 7,117 0,000 84,128 120,253
400,0 -7,242 7,117 0,600 -25,304 10,820
400,0 200,0 109,433* 7,117 0,000 91,370 127,495
300,0 7,242 7,117 0,600 -10,820 25,304
Bent leg amplitude (mm) Scheffé 200,0 300,0 0,000 7,332 990 1,000 -18,608 18,608
400,0 0,000 7,332 990 1,000 -18,608 18,608
300,0 200,0 0,000 7,332 990 1,000 -18,608 18,608
400,0 0,000 7,332 990 1,000 -18,608 18,608
400,0 200,0 0,000 7,332 990 1,000 -18,608 18,608
300,0 0,000 7,332 990 1,000 -18,608 18,608
Soil amplitude (mm) Scheffé 200,0 300,0 0,239* 0,026 678 0,000 0,171 0,307
400,0 0,220* 0,026 678 0,000 0,152 0,287
300,0 200,0 -0,239* 0,026 678 0,000 -0,307 -0,171
400,0 -0,019 0,026 678 0,772 -0,086 0,048
400,0 200,0 -0,220* 0,026 678 0,000 -0,287 -0,152
300,0 0,019 0,026 678 0,772 -0,048 0,086

*. The differences of means are significant in lever 0,05.

FIGURE 5 Soil frequency summary 

The changes in the magnitudes of the soil amplitude are explained in 47% by the changes in the levels of the working depth. For each mm of the working depth increased or diminished, it increased or it diminished 0,694 mm the soil width (Figure 6). The changes in the soil width due to other factors (residuals) they are almost null (0,00).

FIGURE 6 Soil width summary. 

Frequencies Analysis (forced vibrations)

With forced vibrations (Table 9), at different work depths, soil and bent leg frequencies were not different (p>0,05); but the amplitudes were different significantly (p=0,000) for both with evidence of the differences in the width of the bent leg, between the depths 400 mm with 200 mm and 300 mm respectively, but don't between 200 mm and 300 mm, as well as in the widths of the soil, between the depths 200 mm and 400 mm, but don't between 300 mm and 400 mm.

TABLE 9 Multiple comparisons (forced vibrations) 

Dependent variable (I) Depth (mm) (J) Depth (mm) Mean differences (I-J) Standard error Signif. 95% confidence interval
Upper limit Lower limit
Bent leg amplitude (mm) Scheffé 200,00 300,00 0,00000 1,37259 1,000 -3,4832 3,4832
400,00 7,05120* 1,37259 0,000 3,5680 10,5344
300,00 200,00 0,00000 1,37259 1,000 -3,4832 3,4832
400,00 7,05120* 1,37259 0,000 3,5680 10,5344
400,00 200,00 -7,05120* 1,37259 0,000 -10,5344 -3,5680
300,00 -7,05120* 1,37259 0,000 -10,5344 -3,5680
Soil amplitude (mm) Scheffé 200,00 300,00 -0,02393 0,01217 0,157 -0,0548 0,0069
400,00 -0,05453* 0,01217 0,000 -0,0854 -0,0237
300,00 200,00 0,02393 0,01217 0,157 -0,0069 0,0548
400,00 -0,03060 0,01217 0,053 -0,0615 0,0003
400,00 200,00 0,05453* 0,01217 0,000 0,0237 0,0854
300,00 0,03060 0,01217 0,053 -0,0003 0,0615
Bent leg Frequency (Hz) Scheffé 200,00 300,00 0,00000 187,95374 1,000 -476,9688 476,9688
400,00 0,00000 187,95374 1,000 -476,9688 476,9688
300,00 200,00 0,00000 187,95374 1,000 -476,9688 476,9688
400,00 0,00000 187,95374 1,000 -476,9688 476,9688
400,00 200,00 0,00000 187,95374 1,000 -476,9688 476,9688
300,00 0,00000 187,95374 1,000 -476,9688 476,9688
Soil Scheffé Frequency (Hz) 200,00 300,00 -1,13507 9,99518 0,994 -26,4998 24,2296
400,00 -10,78207 9,99518 0,563 -36,1468 14,5826
300,00 200,00 1,13507 9,99518 0,994 -24,2296 26,4998
400,00 -9,64700 9,99518 0,631 -35,0117 15,7177
400,00 200,00 10,78207 9,99518 0,563 -14,5826 36,1468
300,00 9,64700 9,99518 0,631 -15,7177 35,0117

*. The differences of means are significant in lever 0,05

The changes in the bent leg amplitude are explained in 32,7% by the changes in the depth levels. For each mm of depth increased, its amplitude diminished 0,585 mm (Figure 7). In the case of the soil amplitude, 30,7% of the changes is due to changes in the depth levels and, for variations of depth per mm, the soil amplitude varied 0,568 mm (Figure 8).

FIGURE 7 Bent leg amplitude summary 

FIGURE 8 Soil amplitude summary 

CONCLUSIONS

  • Of the modal analysis by finite elements carried out to the subsoiler bent leg and to the soil, the first fifteen vibration modes and their modal forms were obtained, as well as the corresponding natural frequencies, for both, free non-damped vibrations and damped forced vibrations.

  • The modes 1 and 2 of vibration of the bent leg are the most appropriate for the simulation. The modal forms1 and 2, corresponding to the first vibration mode, as well as the modal form 2 in the second mode, have the most appropriate resonant frequencies for loosening of soil.

  • The study of frequency carried out to the soil model to different work depths shows that, using the bent leg with damped forced vibrations, to a work depth of 200 mm, resonant frequencies are obtained that allow better crumbling of soil.

  • The statistical analysis showed significant effect of the work depth in the frequencies and soil amplitude, when the vibratory system works with free vibrations. With forced vibrations, to different work depths, the frequencies, for both, the bent leg and the soil were not different, but the widths were significantly different for both.

REFERENCES

ANI, A.; UZOEJINWA, B.; EZEAMA, O.; UGWU, S.; OHAGWU, C.; ODIGBOH, E.: “Soil bin facility for soil-machine interaction studies”, En: International Soil Tillage Research Organization (ISTRO) Nigeria Symposium, Akure, November 3 - 6, Ed. International Soil Tillage Research Organization (ISTRO), Department of Agricultural and Bioresources Engineering, University of Nigeria, Nsukka, pp. 110 - 124, 2014. [ Links ]

BANDALAN, E.; SALOKHE, V.; GUPTA, C.; NIYAMAPA, T.: “Performance of an oscillating subsoiler in breaking a hardpan”, Journal of Terramechanics, 36(2): 117-125, 1999, ISSN: 0022-4898. [ Links ]

BUTSON, M.; MACINTYRE, D.: “Vibratory soil cutting: I. Soil tank studies of draught and power requirements”, Journal of Agricultural Engineering Research, 26(5): 409-418, 1981, ISSN: 0021-8634. [ Links ]

DE LA ROSA, A.A.A.; HERRERA, S.M.; GONZÁLEZ, C.O.: “Los Modelos Constitutivos para la Simulación de la Respuesta Mecánica de los Suelos Agrícolas mediante el Métodos de Elementos Finito (MEF).”, Revista de Investigaciones de la Universidad Le Cordon Bleu, 1(1): 49-59, 2014, ISSN: 2409-1537. [ Links ]

GARCÍA DE LA FIGAL, C.: “Estudio de la fricción suelo-metal y suelo-plástico para dos suelos cañeros cubanos”, Ciencias Técnicas, Ingeniería en la Construcción de Maquinaria, 3(1): 107-122, 1978. [ Links ]

GARCÍA DE LA FIGAL, C.A.: “Estudio de las propiedades tecnológicas más importantes de los suelos cubanos”, Revista Ciencias Técnicas Agropecuarias, 3(2): 61-77, 1991, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

GONZÁLEZ, C.O.; HERRERA, S.M.; IGLESIAS, C.C.E.; LÓPEZ, B.E.: “Modelos constitutivos drucker prager extendido y drucker prager modificado para suelos rhodic ferralsol”, Terra Latinoamericana, 32(4): 283-290, 2014, ISSN: 0187-5779. [ Links ]

HERNÁNDEZ, J.A.; PÉREZ, J.J.M.; BOSCH, I.D.; CASTRO, S.: Clasificación de los suelos de Cuba, Ed. INCA, Ediciones INCA ed., San Jose de las Lajas, Mayabeque. Cuba, 93 p., 2015, ISBN: 978-959-7023-77-7. [ Links ]

HERRERA, S.M.; IGLESIAS, C.C.E.; GONZÁLEZ, C.O.; LÓPEZ, B.E.; SÁNCHEZ, I.Á.: “Propiedades mecánicas de un Rhodic Ferralsol requeridas para la simulación de la interacción suelo implemento de labranza mediante el Método de Elementos Finitos: Parte I”, Revista Ciencias Técnicas Agropecuarias, 17(3): 31-38, 2008a, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

HERRERA, S.M.; IGLESIAS, C.C.E.; GONZÁLEZ, C.O.; LÓPEZ, B.E.; SÁNCHEZ, I.Á.: “Propiedades mecánicas de un Rhodic Ferralsol requeridas para la simulación de la interacción suelo implemento de labranza mediante el Método de Elementos Finitos: Parte II. Interfase suelo-herramienta”, Revista Ciencias Técnicas Agropecuarias, 17(4): 50-54, 2008b, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

IBRAHMI, A.; BENTAHER, H.; HBAIEB, M.; MAALEJ, A.; MOUAZEN, M.A.: “Study the effect of tool geometry and operational conditions on mouldboard plough forces and energy requirement: Part 1. Finite element simulation”, Computers and Electronics in Agriculture, 117: 258-267, 2015, ISSN: 0168-1699. [ Links ]

KAROONBOONYANAN, R.; SALOKHE, V.; NIYAMAPA, T.; NAKASHIMA, H.: “Vibration effects on the performance of a single-shank subsoiler”, Agricultural Engineering International: CIGR Journal E journal. Manuscript PM 07 018, 9, 2007, ISSN: 1682-1130. [ Links ]

LARSON, L.W.: “The future of vibratory tillage tools”, Transactions of the ASAE, 10(1): 78-79, 1967, ISSN: 2151-0032. [ Links ]

LUNA, L.A.; GONZÁLEZ, I.J.A.: “Estudio de la influencia de las vibraciónes verticales en los requerimientos energéticos del laboreo profundo del suelo”, Revista Ciencias Técnicas Agropecuarias, 11(3): 39-41, 2002, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

MARÍN, C.L.O.; GARCÍA DE LA FIGAL, A.E.; MARTÍNEZ, R.A.: “Effect of the Geometry and Operational Conditions in the Draft Forces of the Arm of a Vibratory Scarifier”, Revista Ciencias Técnicas Agropecuarias, 29(2), 2020, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

MARÍN, C.L.O.; GARCÍA DE LA FIGAL, C.A.: “Model of Soil-TillageTool Interaction Using Finite Element Method”, Revista Ciencias Técnicas Agropecuarias, 28(4), 2019, ISSN: 1010-2760, e-ISSN: 2071-0054. [ Links ]

PREM, M.; SWARNKAR, R.; KANTILAL, V.D.K.; JEETSINH, P.S.K.; CHITHARBHAI, K.B.: “Combined tillage tools-a review”, Current Agriculture Research Journal, 4(2): 179-185, 2016, ISSN: 2347-4688. [ Links ]

RAO, G.; CHAUDHARY, H.: “A review on effect of vibration in tillage application”, En: IOP Conference Series: Materials Science and Engineering, ser. Mater. Sci. Eng. . 377 012030, Ed. IOP Publishing, vol. 377, 2018, ISBN: 1757-899X. [ Links ]

RAO, G.; CHAUDHARY, H.; SHARMA, A.: “Design and analysis of vibratory mechanism for tillage application”, Open Agriculture, 3(1): 437-443, 2018. [ Links ]

SHAHGOLI, G.; FIELKE, J.; DESBIOLLES, J.; SAUNDERS, C.: “Optimising oscillation frequency in oscillatory tillage”, Soil and tillage research, 106(2): 202-210, 2010, ISSN: 0167-1987. [ Links ]

SHKURENKO, N.S.: Experimental data on the effect of oscillation on the cutting resistance of soil, Ed. National Institute of Agricultural Engineering, USA, 1966. [ Links ]

SMITH, J.L.; DAIS, J.L.; FLIKKE, A.M.: “Theoretical analysis of vibratory tillage”, Transactions of the ASAE, 15(5): 831-0833, 1972, ISSN: 2151-0032. [ Links ]

SULATISKY, M.T.; UKRAINETZ, P.R.: “Draft reduction by vibratory soil cutting”, Transactions of the Canadian Society for Mechanical Engineering, 1(4): 175-181, 1972. [ Links ]

ZHANG, J.: Vibratory analysis of tillage operation, University of Saskatchewan, Department of Agricultural and Bioresource Engineering, Doctoral Thesis, Saskatchewan, Canada, 1997. [ Links ]

The mention of trademarks of specific equipment, instruments or materials is for identification purposes, there being no promotional commitment in relation to them, neither by the authors nor by the publisher.

Received: September 15, 2020; Accepted: March 01, 2021

*Author for correspondence: Luis Orlando Marín-Cabrera, e-mail: luismc@unah.edu.cu

Luis Orlando Marín-Cabrera, Especialista, Universidad Agraria de La Habana (UNAH), Facultad de. Ciencias Técnicas, Centro de Mecanización Agropecuaria (CEMA), San José de las Lajas, Mayabeque, Cuba, e-mail: luismc@unah.edu.cu

Armando Eloy García de la Figal-Costales, Profesor Titular, Universidad Agraria de La Habana (UNAH), Facultad de. Ciencias Técnicas, Centro de Mecanización Agropecuaria (CEMA), San José de las Lajas, Mayabeque, Cuba, e-mail: areloy@unah.edu.cu

Arturo Martínez-Rodríguez, Universidad Agraria de La Habana (UNAH), Facultad de. Ciencias Técnicas, Centro de Mecanización Agropecuaria (CEMA), San José de las Lajas, Mayabeque, Cuba, e-mail: armaro646@gmail.com

The authors of this work declare no conflict of interests.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License