Señor Editor:
Un estudio publicado en la presente revista ha destacado el impacto de la infección provocada por la COVID-19 y la elevada prevalencia de mortalidad en los adultos mayores, 1 lo cual es incluso más grave en aquellas personas con condiciones de salud comórbidas. 1
Esta situación plantea desafíos específicos sobre las condiciones de salud ante el impacto de la COVID-19, por lo que se requiere comprender cómo sus mecanismos fisiopatológicos interactúan entre sí, siendo recomendable la evaluación sistémica de sus factores y componentes etiológicos vinculados al impacto de este padecimiento. Esto es posible mediante el análisis de redes de correlaciones estadísticas (dirigidas o no dirigidas) basado en la teoría de grafos, el cual ha tenido mayor difusión durante la última década en el ámbito clínico. 2
En este modelo las asociaciones son de orden cero o relaciones parciales causales que conectan a los nodos (variables) y estructuran el modelo dinámico. Su representación gráfica facilita la interpretación de manera sencilla: mientras más gruesa sea la conexión entre las variables, mayor será la relación estadística. 2
El modelo de red es un análisis multivariante compuesto por múltiples relaciones no lineales regularizadas (eliminación de relaciones más espurias mediante el estimador [LASSO]) después del control multivariado de los elementos de la red. 2 Esto favorece la inclusión de variables de diversa naturaleza para la evaluación de múltiples aspectos de salud y su condición comórbida, así como la interacción entre sus múltiples factores etiológicos y moduladores. 2 Se puede utilizar como ejemplo, un estudio de red en una muestra brasileña que incluyó diversas condiciones clínicas como: diabetes, osteoporosis, incontinencia urinaria, además de medidas antropométricas, fisiológicas y neuropsiquiátricas como la depresión y la fragilidad. 3 Otra investigación de red evaluó las relaciones entre condiciones crónicas de salud como la diabetes, hipertensión, asma, problemas de espalda, migrañas, tabaquismo, así como la calidad de vida, salud física y mental y variables psicológicas como la ansiedad, la depresión y la psicosis. 4
Este método permite estimar los elementos “puente” (altos índices de centralidad) que refieren mayor implicancia clínica, lo cual es de mayor requerimiento ante el contexto actual debido al impacto psicológico negativo provocado por la COVID-19. Aquellos elementos afectan las interacciones de los demás componentes, es decir, una mayor medida de este elemento “puente” aumenta la probabilidad de fortalecer las demás relaciones, y viceversa, su disminución o una menor medida es posible que reduzca las demás conexiones e incluso genere un colapso en toda la estructura de la red. 2 Esto es esencial en la planificación y desarrollo personalizado de intervenciones clínicas ante el contexto de la COVID-19 a partir de los resultados obtenidos. Asimismo, la situación provocada por la pandemia ha generado la evaluación de múltiples medidas clínicas relacionadas al impacto psicológico como el miedo, el estrés, la ansiedad por COVID-19. 5) Es posible incluir dos estructuras simultáneas de red, antes y después de un evento o intervención, por ejemplo, se ha reportado un estudio que evaluó dos redes simultáneas de síntomas de ansiedad, depresión, estrés y miedo por COVID-19 en dos tiempos: durante y después del aislamiento obligatorio por COVID-19. 5)
Recientemente una investigación evaluó el sistema de red de sintomatología depresiva en pacientes con hipertensión arterial en el contexto peruano. 6 Sin embargo, urge una mayor divulgación y capacitación sobre este enfoque para su uso general en la investigación clínica de habla hispana.
El análisis de red ofrece una valiosa contribución metodológica y práctica en las ciencias de la salud. Este análisis posibilita que los profesionales clínicos se encarguen de interpretar y traducir la información derivada de su investigación en una mejor atención integral en la población clínica de interés, que permita enfocarse en una intervención concreta a partir de los resultados de red, desde la perspectiva de sistemas de modelos complejos. La evaluación de la red afianza una mayor explicación del funcionamiento de diversas condiciones de salud vinculadas al impacto de la COVID-19 y expresa cómo sus mecanismos etiológicos interactúan entre sí.